A Hoogsteen base pair embedded in undistorted B-DNA.
نویسندگان
چکیده
Hoogsteen base pairs within duplex DNA typically are only observed in regions containing significant distortion or near sites of drug intercalation. We report here the observation of a Hoogsteen base pair embedded within undistorted, unmodified B-DNA. The Hoogsteen base pair, consisting of a syn adenine base paired with an anti thymine base, is found in the 2.1 A resolution structure of the MATalpha2 homeodomain bound to DNA in a region where a specifically and a non-specifically bound homeodomain contact overlapping sites. NMR studies of the free DNA show no evidence of Hoogsteen base pair formation, suggesting that protein binding favors the transition from a Watson-Crick to a Hoogsteen base pair. Molecular dynamics simulations of the homeodomain-DNA complex support a role for the non-specifically bound protein in favoring Hoogsteen base pair formation. The presence of a Hoogsteen base pair in the crystal structure of a protein-DNA complex raises the possibility that Hoogsteen base pairs could occur within duplex DNA and play a hitherto unrecognized role in transcription, replication and other cellular processes.
منابع مشابه
Hoogsteen base pairs proximal and distal to echinomycin binding sites on DNA.
Forms of the DNA double helix containing non-Watson-Crick base-pairing have been discovered recently based on x-ray diffraction analysis of quinoxaline antibiotic-oligonucleotide complexes. In an effort to find evidence for Hoogsteen base-pairing at quinoxaline-binding sites in solution, chemical "footprinting" (differential cleavage reactivity) of echinomycin bound to DNA restriction fragments...
متن کاملBiochemical evidence for the requirement of Hoogsteen base pairing for replication by human DNA polymerase iota.
Because of the near geometric identity of Watson-Crick (W-C) GxC and AxT base pairs, a given DNA polymerase forms the four possible correct base pairs with nearly identical catalytic efficiencies. However, human DNA polymerase iota (Pol iota), a member of the Y family of DNA polymerases, exhibits a marked template specificity, being more efficient at incorporating the correct nucleotide opposit...
متن کاملThe structures and relative stabilities of d(G x G) reverse Hoogsteen, d(G x T) reverse wobble, and d(G x C) reverse Watson-Crick base-pairs in DNA crystals.
We have solved the structures of the homoduplex d(Gm5CGCGCG)2, and the heteroduplexes d(GCGCGCG)/d(TCGCGCG) and d(GCGCGCG)/d(CCGCGCG). The structures form six base-pairs of identical Z-DNA duplexes with single nucleotides overhanging at the 5'-ends. The overhanging nucleotide from one strand remains stacked and sandwiched between the blunt-ends of two adjacent Z-DNA duplexes, while the overhang...
متن کاملSilver(I)-mediated Hoogsteen-type base pairs.
Metal-mediated Hoogsteen-type base pairs are useful for the construction of DNA duplexes containing contiguous stretches of metal ions along the helical axis. To fine-tune the stability of such base pairs and the selectivity toward different metal ions, the availability of a selection of artificial nucleobases is highly desirable. In this study, we follow a theoretical approach utilizing disper...
متن کاملGuanine to Inosine Substitution Leads to Large Increases in the Population of a Transient G·C Hoogsteen Base Pair
We recently showed that Watson-Crick base pairs in canonical duplex DNA exist in dynamic equilibrium with G(syn)·C+ and A(syn)·T Hoogsteen base pairs that have minute populations of ∼1%. Here, using nuclear magnetic resonance R1ρ relaxation dispersion, we show that substitution of guanine with the naturally occurring base inosine results in an ∼17-fold increase in the population of transient Ho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 30 23 شماره
صفحات -
تاریخ انتشار 2002